Home PHP Page 8 - Implement Bayesian inference using PHP, Part 1

# Implementing the calculation with Bayes.php - PHP

Have you ever wanted to build an intelligent Web application? Paul Meagher shows how to do it using conditional probability. (This intermediate-level article was first published by IBM developerWorks, March 16, 2004, at http://www.ibm.com/developerWorks).

Rating:  / 25
January 05, 2005

SEARCH DEV SHED

TOOLS YOU CAN USE

The Bayes.php class implements the Bayes theorem calculation. The getPosterior method is where most of the mathematically interesting code resides.

Listing 5. Implementing the calculation with the Bayes.php class
<?php

/**
* Bayes
*
* Calculates posterior probabilities for m hypotheses and n evidence
* alternatives.  The code was inspired by a procedural TrueBasic version
* (Bayes.tru) bundled with Grimstead and Snell's excellent online
* textbook "Introduction to Probability".
*/
class Bayes {

/**
* Number of evidence alternatives (that is, number of rows).
*/
var \$m;

/**
* Number of hypothesis alternatives (that is, number of columns).
*/
var \$n;

/**
* Output labels for evidence alternatives.
*/
var \$row_labels = array();

/**
* Output labels for hypothesis alternatives.
*/
var \$column_labels = array();

/**
* Vector container for prior probabilities.
*/
var \$priors = array();

/**
* Matrix container for likelihood of evidence e given hypothesis h.
*/
var \$likelihoods = array();

/**
* Matrix container for posterior probabilties.
*/
var \$posterior = array();

/**
* Vector container for evidence probabilties.
*/
var \$evidence = array();

/**
* Initialize the Bayes algorithm by setting the priors, likelihoods
* and dimensions of the likelihood and posterior matrices.
*/
function Bayes(\$priors, \$likelihoods) {
\$this->priors = \$priors;
\$this->likelihoods = \$likelihoods;
\$this->m = count(\$this->likelihoods);  // num rows
\$this->n = count(\$this->likelihoods[0]); // num cols
return true;
}

/**
* Output method for setting row labels prior to display.
*/
function setRowLabels(\$row_labels) {
\$this->row_labels = \$row_labels;
return true;
}

/**
* Output method for setting column labels prior to display.
*/
function setColumnLabels(\$column_labels) {
\$this->column_labels = \$column_labels;
return true;
}

/**
* Compute the posterior probability matrix given the priors and
* likelihoods.
*
* The first set of loops computes the denominator of the canonical
* Bayes equation. The probability appearing in the denominator
* serves a normalizing role in the computation - it ensures that
* posterior probabilities sum to 1.
*
* The second set of loops:
*
*   1. multiplies the prior[\$h] by the likelihood[\$h][\$e]
*   2. divides the result by the denominator
*   3. assigns the result to the posterior[\$e][\$h] probability matrix
*/
function getPosterior() {
// Find probability of evidence e
for(\$e=0; \$e < \$this->n; \$e++) {
for (\$h=0; \$h < \$this->m; \$h++) {
\$this->evidence[\$e] += \$this->priors[\$h]
* \$this->likelihoods[\$h][\$e];
}
}
// Find probability of hypothesis given evidence
for(\$e=0; \$e < \$this->n; \$e++) {
for (\$h=0; \$h < \$this->m; \$h++) {
\$this->posterior[\$e][\$h] = \$this->priors[\$h
* \$this->likelihoods[\$h][\$e] / \$this->evidence[\$e];
}
}
return true;
}

/**
* Output method for displaying posterior probability matrix
*/
function toHTML(\$number_format="%01.3f") {
?>
<tr>
<td> </td>
<?php
for (\$h=0; \$h < \$this->m; \$h++) {
?>
<td align='center'>
<b><?php echo \$this->column_labels[\$h] ?></b>
</td>
<?php
}
?>
</tr>
<?php
for(\$e=0; \$e < \$this->n; \$e++) {
?>
<tr>
<td><b><?php echo \$this->row_labels[\$e] ?></b></td>
<?php
for (\$h=0; \$h < \$this->m; \$h++) {
?>
<td align='right'>
<?php printf(\$number_format, \$this->posterior[\$e][\$h]) ?>
</td>
<?php
}
?>
</tr>
<?php
}
?>
</table>
<?php
}
}
?>

 >>> More PHP Articles          >>> More By developerWorks