Home arrow PHP arrow Page 4 - Implement Bayesian inference using PHP, Part 1

Conditional probability and SQL - PHP

Have you ever wanted to build an intelligent Web application? Paul Meagher shows how to do it using conditional probability. (This intermediate-level article was first published by IBM developerWorks, March 16, 2004, at http://www.ibm.com/developerWorks).

TABLE OF CONTENTS:
  1. Implement Bayesian inference using PHP, Part 1
  2. Conditional probability
  3. Learning from experience
  4. Conditional probability and SQL
  5. Frequency versus probability format
  6. Deriving Bayes Theorem
  7. Medical diagnosis wizard
  8. Implementing the calculation with Bayes.php
  9. Sensitivity analysis
  10. Resources
By: developerWorks
Rating: starstarstarstarstar / 25
January 05, 2005

print this article
SEARCH DEV SHED

TOOLS YOU CAN USE

advertisement

P(A | B) can be mapped onto database-query operations. For example, the probability of cancer given a positive test result, P(+cancer | +test), can be obtained by issuing this SQL query then doing some tallies on the result set like this:

SELECT cancer_status FROM Data WHERE test_status='+test'

If I gather information about how several boolean-valued tests co-vary with a boolean-valued diagnosis (like that of cancer or not cancer), then I can perform slightly more complex queries to study how diagnostically useful other factors are in determining whether a patient has cancer, such as in the following:

SELECT cancer_status
FROM Data
WHERE genetic_status='+'
AND age_status='+'
AND biopsy_status='+'

In the case of detecting e-mail spam, I might be interested in computing P(+spam | title_word='viagra' AND title_word='free'), which could be viewed as a directive to issue the following SQL query:

SELECT spam_status FROM Emails WHERE email_title LIKE 'viagra'
     AND email_title LIKE 'free'

After enumerating the number of e-mails that are spam and have "viagra" and "free" in the title (like so):

count_emails(spam_status='+spam' AND email_title LIKE 'viagra'
     AND email_title LIKE 'free')

and dividing by the overall number of e-mails with the words "viagra" and "free" in the title:

count_emails(email_title LIKE 'viagra' AND email_title LIKE 'free')

I might arrive at the conclusion that the appearence of these words in the title strongly and specifically co-varies with the message being spam (after all, 18/18 = 100 percent) and this rule might be used to automatically filter such messages.

In Bayes spam filtering, you need to initially train the software in which e-mails are spam and which are not. One can imagine storing spam_status information with each e-mail record (for example, email_id, spam_status, email_title, or email_message) and doing the previous queries and counts on this data to decide whether to forward a new e-mail into your inbox.



 
 
>>> More PHP Articles          >>> More By developerWorks
 

blog comments powered by Disqus
escort Bursa Bursa escort Antalya eskort
   

PHP ARTICLES

- Hackers Compromise PHP Sites to Launch Attac...
- Red Hat, Zend Form OpenShift PaaS Alliance
- PHP IDE News
- BCD, Zend Extend PHP Partnership
- PHP FAQ Highlight
- PHP Creator Didn't Set Out to Create a Langu...
- PHP Trends Revealed in Zend Study
- PHP: Best Methods for Running Scheduled Jobs
- PHP Array Functions: array_change_key_case
- PHP array_combine Function
- PHP array_chunk Function
- PHP Closures as View Helpers: Lazy-Loading F...
- Using PHP Closures as View Helpers
- PHP File and Operating System Program Execut...
- PHP: Effects of Wrapping Code in Class Const...

Developer Shed Affiliates

 


Dev Shed Tutorial Topics: