Home arrow MySQL arrow Security and More in MySQL Databases

Security and More in MySQL Databases

If you need to administer MySQL, this article gets you off to a good start. In this section, we discuss system and other variables, then begin to look at general security issues. The second of a multi-part series, it is excerpted from chapter four of the book MySQL Administrator's Guide, written by Paul Dubois (Sams; ISBN: 0672326345).

TABLE OF CONTENTS:
  1. Security and More in MySQL Databases
  2. 4.2.3.1.2 Dynamic System Variables
  3. 4.2.4 Server Status Variables
  4. 4.3 General Security Issues
  5. 4.3.2 Making MySQL Secure Against Attackers
  6. 4.3.4 Security Issues with LOAD DATA LOCAL
By: Sams Publishing
Rating: starstarstarstarstar / 3
June 01, 2006

print this article
SEARCH DEV SHED

TOOLS YOU CAN USE

advertisement

4.2.3.1 System Variables

Starting from MySQL 4.0.3, we provide better access to a lot of system and connection variables. Many variables can be changed dynamically while the server is running. This allows you to modify server operation without having to stop and restart it.

The mysqld server maintains two kinds of variables. Global variables affect the overall operation of the server. Session variables affect its operation for individual client connections.

When the server starts, it initializes all global variables to their default values. These defaults may be changed by options specified in option files or on the command line. After the server starts, those global variables that are dynamic can be changed by connecting to the server and issuing a SET GLOBAL var_name statement. To change a global variable, you must have the SUPER privilege.

The server also maintains a set of session variables for each client that connects. The client's session variables are initialized at connect time using the current values of the corresponding global variables. For those session variables that are dynamic, the client can change them by issuing a SET SESSION var_name statement. Setting a session variable requires no special privilege, but a client can change only its own session variables, not those of any other client.

A change to a global variable is visible to any client that accesses that global variable. However, it affects the corresponding session variable that is intialized from the global variable only for clients that connect after the change. It does not affect the session variable for any client that is already connected (not even that of the client that issues the SET GLOBAL statement).

Global or session variables may be set or retrieved using several syntax forms. The following examples use sort_buffer_size as a sample variable name.

To set the value of a GLOBAL variable, use one of the following syntaxes:

mysql> SET GLOBAL sort_buffer_size=value;
mysql> SET @@global.sort_buffer_size=value;

To set the value of a SESSION variable, use one of the following syntaxes:

mysql> SET SESSION sort_buffer_size=value;
mysql> SET @@session.sort_buffer_size=value;
mysql> SET sort_buffer_size=value;

LOCAL is a synonym for SESSION.

If you don't specify GLOBAL, SESSION, or LOCAL when setting a variable, SESSION is the default.

To retrieve the value of a GLOBAL variable, use one of the following statements:

mysql> SELECT @@global.sort_buffer_size;
mysql> SHOW GLOBAL VARIABLES like
'sort_buffer_size';

To retrieve the value of a SESSION variable, use one of the following statements:

mysql> SELECT @@sort_buffer_size;
mysql> SELECT @@session.sort_buffer_size;
mysql> SHOW SESSION VARIABLES like
'sort_buffer_size';

Here, too, LOCAL is a synonym for SESSION.

When you retrieve a variable with SELECT @@var_name (that is, you do not specify global., session., or local., MySQL returns the SESSION value if it exists and the GLOBAL value otherwise.

For SHOW VARIABLES, if you do not specify GLOBAL, SESSION, or LOCAL, MySQL returns the SESSION value.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when retrieving them is to prevent problems in the future. If we remove a SESSION variable with the same name as a SESSION variable, a client with the SUPER privilege might accidentally change the GLOBAL variable rather than just the SESSION variable for its own connection. If we add a SESSION variable with the same name as a SESSION variable, a client that intends to change the GLOBAL variable might find only its own SESSION variable changed.

4.2.3.1.1 Structured System Variables

Structured system variables are supported beginning with MySQL 4.1.1. A structured variable differs from a regular system variable in two respects:

  • Its value is a structure with components that specify server parameters considered to be closely related.

  • There might be several instances of a given type of structured variable. Each one has a different name and refers to a different resource maintained by the server.

Currently, MySQL supports one structured variable type. It specifies parameters that govern the operation of key caches. A key cache structured variable has these components:

  • key_buffer_size

  • key_cache_block_size

  • key_cache_division_limit

  • key_cache_age_threshold

The purpose of this section is to describe the syntax for referring to structured variables. Key cache variables are used for syntax examples, but specific details about how key caches operate are found elsewhere, in Section 6.4.6, "The MyISAM Key Cache."

To refer to a component of a structured variable instance, you can use a compound name in instance_name.component_name format. Examples:

hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always predefined. If you refer to a component of a structured variable without any instance name, the default instance is used. Thus, default.key_buffer_size and key_buffer_size both refer to the same system variable.

The naming rules for structured variable instances and components are as follows:

  • For a given type of structured variable, each instance must have a name that is unique within variables of that type. However, instance names need not be unique across structured variable types. For example, each structured variable will have an instance named default, so default is not unique across variable types.

  • The names of the components of each structured variable type must be unique across all system variable names. If this were not true (that is, if two different types of structured variables could share component member names), it would not be clear which default structured variable to use for references to member names that are not qualified by an instance name.

  • If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted identifier using backticks. For example, hot-cache is not legal, but ´hot-cache´ is.

  • global, session, and local are not legal instance names. This avoids a conflict with notation such as @@global.var_name for referring to non-structured system variables.

At the moment, the first two rules have no possibility of being violated because the only structured variable type is the one for key caches. These rules will assume greater significance if some other type of structured variable is created in the future.

With one exception, it is allowable to refer to structured variable components using compound names in any context where simple variable names can occur. For example, you can assign a value to a structured variable using a command-line option:

shell> mysqld --hot_cache.key_buffer_size=64K

In an option file, do this:

[mysqld]
hot_cache.key_buffer_size=64K

If you start the server with such an option, it creates a key cache named hot_cache with a size of 64KB in addition to the default key cache that has a default size of 8MB.

Suppose that you start the server as follows:

shell> mysqld --key_buffer_size=256K \
--extra_cache.key_buffer_size=128K \
--extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have written --default.key_buffer_size=256K.) In addition, the server creates a second key cache named extra_cache that has a size of 128KB, with the size of block buffers for caching table index blocks set to 2048 bytes.

The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:

shell> mysqld --key_buffer_size=6M \
--hot_cache.key_buffer_size=2M \
--cold_cache.key_buffer_size=2M

Structured variable values may be set and retrieved at runtime as well. For example, to set a key cache named hot_cache to a size of 10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size =
10*1024*1024;
mysql> SET @@global.hot_cache.key_buffer_size =
10*1024*1024;

To retrieve the cache size, do this:

mysql> SELECT @@global.hot_cache.key_buffer_size;

However, the following statement does not work. The variable is not interpreted as a compound name, but as a simple string for a LIKE pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE
'hot_cache.key_buffer_size';

This is the exception to being able to use structured variable names anywhere a simple variable name may occur.



 
 
>>> More MySQL Articles          >>> More By Sams Publishing
 

blog comments powered by Disqus
escort Bursa Bursa escort Antalya eskort
   

MYSQL ARTICLES

- Oracle Unveils MySQL 5.6
- MySQL Vulnerabilities Threaten Databases
- MySQL Cloud Options Expand with Google Cloud...
- MySQL 5.6 Prepped to Handle Demanding Web Use
- ScaleBase Service Virtualizes MySQL Databases
- Oracle Unveils MySQL Conversion Tools
- Akiban Opens Database Software for MySQL Use...
- Oracle Fixes MySQL Bug
- MySQL Databases Vulnerable to Password Hack
- MySQL: Overview of the ALTER TABLE Statement
- MySQL: How to Use the GRANT Statement
- MySQL: Creating, Listing, and Removing Datab...
- MySQL: Create, Show, and Describe Database T...
- MySQL Data and Table Types
- McAfee Releases Audit Plugin for MySQL Users

Developer Shed Affiliates

 


Dev Shed Tutorial Topics: